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Abstract. We consider the random Schrödinger equation as it arises in the paraxial regime for wave propagation in random
media. In the white noise limit it becomes the Itô-Schrödinger stochastic partial differential equation (SPDE) which we analyze
here in the high frequency regime. We also consider the large lateral diversity limit where the typical width of the propagating
beam is large compared to the correlation length of the random medium. We use the Wigner transform of the wave field and
show that it becomes deterministic in the large diversity limit when integrated against test functions. This is the self-averaging
property of the Wigner transform. It follows easily when the support of the test functions is of the order of the beam width. We
also show with a more detailed analysis that the limit is deterministic when the support of the test functions tends to zero but
is large compared to the correlation length.
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1. Introduction. In the study of wave propagation in random media, the parabolic or paraxial approxi-
mation is used often when waves propagate mostly in one direction and there is little backscattering [27]. The
scattering problem is reduced to an initial value problem in a random medium in which distance along the
direction of propagation plays the role of time. This is a very significant simplification that has been adopted
in many physical applications [27, 28, 29, 24]. The study of waves in the parabolic approximation is also very
useful in the analysis of time reversal and imaging in random media [9, 5, 6, 10, 11, 12]. Self-averaging is the
property of some physical quantities to be statistically stable, that is, independent of the random fluctuations
in the medium properties. For this reason, self-averaging functionals of the wave field play an important role
in imaging and time reversal. They were analyzed in the regime of the parabolic approximation in [5, 25, 2]
and in the random geometrical optics regime in [4]. In this paper we extend and simplify the analysis in [25].
We show that in the parabolic approximation, in a variety of scaling regimes local averages of the wave field
in phase space are self-averaging when there is substantial lateral diversity. This means that the correlation
length of the inhomogeneities is small compared to the width of the propagating beam.

In the parabolic approximation the wave equation reduces to the Schrödinger equation in a random
medium. When the propagation distance is large compared to the correlation length, then the random
potential in the Schrödinger equation tends to white noise in the propagation direction [13, 1, 16, 17]. We
begin here with this white noise, Itô-Schrödinger equation. In Section 2 we formulate the problem and
introduce the scaling. In Section 3 we introduce the Wigner transform of the wave field and state the main
results. They characterize the behavior of the Wigner transform in the high frequency and large diversity
limits. In Section 4 we prove the weak convergence of the Wigner transforms in law, in the various asymptotic
limits. This is done in a simple way using infinitesimal generators, which is a general approach that identifies
the limit problem in an efficient way. In Section 5 we extend the analysis of weak convergence in law to test
functions with asymptotically diminishing support. Such results were also obtained in [2] using convergence
of the second moments but the rate of diminishing support is faster in the analysis of Section 5.

2. The random Schrödinger equation.

2.1. Characteristic scales. We consider wave propagation in a random medium in the regime when the
paraxial approximation is valid and waves propagate over distances that are much larger than both the typical
wavelength and the correlation length of the random inhomogeneities. We introduce several characteristic
scales in order to identify the regimes for the asymptotic analysis that we want to carry out. They are

• Lz, the characteristic distance in the direction of propagation.
• Lx, the length scale in the directions transverse to the direction of propagation. This is typically

taken to be the width of the propagating beam.
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• k0 = 2π/λ0, the central wavenumber corresponding to the central wavelength λ0.
• l, the correlation length of the random medium. It characterizes the dominant spatial scale of the

random fluctuations.
• σ0, the dimensionless standard deviation of the random fluctuations in the medium.

In the asymptotic regimes that we consider here Lz and Lx are large compared to l and λ0, and σ0 is small.

2.2. The parabolic approximation. We consider the wave equation in a random medium

1
c2(~x)

∂2u

∂t2
−4u = 0 , t > 0 , ~x ∈ Rd+1 ,(2.1)

with d = 1, 2 and the local wave speed c(z,x) such that

c−2(z,x) = c−2
0

[
1 + σ0µ

(z
l
,
x
l

)]
.

Here z and x ∈ Rd are, respectively, the coordinates along and transverse to the direction of propagation, and
~x = (z,x). The random function µ models the fluctuations in the propagation speed. Solutions of the wave
equation (2.1) may be written in the form

u(t,x, z) =
1
2π

∫
eiω(z/c0−t)ψ(z,x;ω/c0)dω ,(2.2)

where the complex amplitude ψ(z,x; k) satisfies the Helmholtz equation

2ikψz + ∆xψ + k2(n2 − 1)ψ = −ψzz.(2.3)

Here k = ω/c0 is the wavenumber and n(x, z) = c0/c(x, z) is the random index of refraction relative to a
reference speed c0. The fluctuations of the refraction index have the form

n2(z,x)− 1 = σ0µ
(z
l
,
x
l

)
.(2.4)

The fluctuations are modeled by a stationary random field with mean zero, variance σ2
0 and correlation length

l. The normalized and dimensionless covariance is given by

R(z,x) = E{µ(z + z′,x + x′)µ(z′,x′)}(2.5)

with the normalization R(0, 0) = 1.
We obtain the dimensionless form of (2.3) by introducing dimensionless variables by x = Lxx′, z = Lzz

′,
k = k0k

′ and rewriting it as

2ik
∂ψ

∂z
+

Lz

k0L2
x

∆xψ + k2k0Lzσ0µ

(
zLz

l
,
xLx

l

)
ψ = − 1

Lzk0

∂2ψ

∂z2
,(2.6)

after dropping the primes. We identify now the following three, usually small, dimensionless parameters in
the problem:

• ε =
l

Lz
, the ratio of the correlation length to the propagation distance,

• δ =
l

Lx
, the ratio of the correlation length to the transverse length scale, which is usually the beam

width,

• θ =
Lz

k0L2
x

=
λ0Lz

2πL2
x

, the inverse of the Fresnel number, the ratio of the diffraction focal spot of the

beam to its width.
In terms of these parameters (2.6) has the form

2ikψz + θ∆xψ +
k2σ0δ

2

θε2
µ(
z

ε
,
x
δ
)ψ = −θε

2

δ2
ψzz.(2.7)
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We will assume here that ε is the smallest parameter in the problem. This assumption is satisfied by wave
fields propagating mainly in the z direction. It then follows formally, but it is quite difficult to prove, that
the ψzz term on the right in (2.7) is a lower order term and can be neglected. The parabolic wave equation,
or the random Schrödinger equation, is what results when the right side of (2.7) is zero. The validity of this
approximation for underwater sound propagation is discussed in [27] and a more recent analysis is found in
[1]. We will thus consider the initial value problem for the random Schrödinger equation

2ikψz + θ∆xψ +
k2σδ

θ
√
ε
µ

(z
ε
,
x
δ

)
ψ = 0 , z > 0(2.8)

with ψ at z = 0 given and where

σ =
σ0δ

ε3/2
.

This scaled noise strength parameter will be assumed to be independent of ε and δ as these parameters tend
to zero in the asymptotic analysis that follows.

2.3. The white noise limit. We are interested in the behavior of the solution of (2.8) in the limit
ε → 0 while δ and θ are fixed. This means that ε is the smallest of the three parameters ε, θ, δ in (2.8). We
note that under suitable mixing conditions [20] on the random field µ the central limit theorem holds and

lim
ε→0

1√
ε

∫ z

0

µ
(s
ε
,x

)
ds = B(z,x),

weakly in law, where B is a Brownian random field parameterized by x. This means that for any test function
h(x)

1√
ε

∫ z

0

µh(s/ε)ds 7→ Bh(z), z ≥ 0,

in law, where

µh(z) =
∫

Rd

µ(z,x)h(x)dx , Bh(z) =
∫

Rd

B(z,x)h(x)dx.

The Brownian random field B(z,x) is a Gaussian process with mean zero and covariance

E{B(z1,x1)B(z2,x2)} = R0(|x1 − x2|)min{z1, z2}.(2.9)

Here R0 is the integrated in z transverse correlation function defined by

R0(x) =
∫ ∞

−∞
R(z,x)dz.

We assume that it is smooth, rapidly decaying and isotropic.
In the white noise limit ε→ 0 the solution of the random partial differential equation (2.8) converges in

law to the process defined by the stochastic partial differential equation

2ikdzψ + θ∆xψdz +
k2σδ

θ
ψ ◦ dzB

(x
δ
, z

)
= 0(2.10)

given here in the Stratonovich form. The Itô form of (2.10) is given by

2ikdzψ + θ∆xψdz +
ik3σ2δ2

4θ2
R0(0)ψdz +

k2σδ

θ
ψdzB

(x
δ
, z

)
= 0.(2.11)

When the fluctuation process µ(z,x) is Markovian in z with values in a suitable function space, then the
above white noise limit for the random Schrödinger equation can be analyzed with the perturbed test function
methods presented in [22]. More generally, white noise limits for random ordinary differential equations are
studied in [8] and for partial differential equations in [13]. A recent study of white noise limits for Schrödinger
and Wigner equations is given in [16, 17].
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2.4. Scaling limits. There are two small parameters left in the Itô-Schrödinger equation (2.11) after we
have taken the white-noise limit – the inverse Fresnel number θ and the non-dimensional correlation length
δ. The purpose of this paper is to analyze the stochastic partial differential equation (2.10) or (2.11) in the
following scaling limits.

• The low frequency limit and large lateral diversity limit: δ → 0 with θ fixed,
• the high frequency or geometric asymptotics limit followed by the large lateral diversity limit: θ �
δ � 1, that is, θ → 0 followed by δ → 0, and

• the combined scaling limit: θ ∼ δ � 1 with θ → 0 and δ → 0 simultaneously.
We refer to the limit θ → 0 in (2.11) as the high frequency limit and to the limit δ → 0 as the limit of

large lateral diversity.

2.5. The low frequency limit. It follows immediately from (2.11) that if we pass to the limit δ → 0
with a fixed θ > 0 we arrive at the homogeneous Schrödinger equation

2ikψz + θ∆xψ = 0.(2.12)

This is because, first, we have an a priori bound ‖ψ(t)‖L2 = ‖ψ0‖L2 , as the L2-norm of ψ is preserved by the
Schrödinger equation, and, second, for any deterministic test function η(z,x) we have by the Itô isometry

E

[
k2σδ

θ

∫ z

0

∫
η(s,x)ψ(s,x)dzB

(x
δ
, s

)
dx

]2

=
(
k2σδ

θ

)2

E

∫ z

0

∫
η(s,x)η(s,x′)ψ(s,x)ψ(s,x′)R0

(
x− x′

δ

)
dxdx′ds→ 0 as δ → 0.

A similar bound holds for the third term on the left side of (2.11) – therefore, convergence in probability of
the solution to (2.11) to the solution of (2.12) follows.

The other regimes – when θ � δ and θ ∼ δ are more involved. Their analysis is easier to perform in
phase space and not for the solution of the Ito-Schrödinger equation itself. For this purpose we introduce the
Wigner transform.

3. The Itô-Wigner equation. In the high frequency limit θ → 0 (whether coupled with the limit δ → 0,
or not) solutions of the Itô-Schrödinger equation become oscillatory in time and space. Therefore, rather than
studying the limit of the solution itself we consider the limits of its Wigner transform which resolves the
wave energy of oscillatory fields in the phase space and (unlike the spatial energy density) satisfies a closed
evolution equation.

We define the spatial Fourier transform by

f̂(p) =
∫
dxe−ip·xf(x) ,

so that the inverse transform is given by

f(x) =
∫

dp
(2π)d

eip·xf̂(p) ,

where d = 1 or 2 is the number of transverse spatial dimensions.

3.1. The Wigner transform. A convenient tool for the analysis of wave propagation in a random
medium is the Wigner distribution [26]. We define it here relative to the scale θ by

Wθ(z,x,p) =
1

(2π)d

∫
Rd

eip·yψ(x− θy
2
, z)ψ(x +

θy
2
, z)dy ,(3.1)

where the bar denotes complex conjugate. The Wigner distribution is real, may be interpreted as phase space
wave energy and is particularly well suited for the high frequency asymptotics in random media [26]. Using
the Itô calculus we find from (2.11) that the scaled Wigner distribution satisfies the stochastic transport
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equation

dWθ(z,x,p) +
p
k
· ∇xWθ(z,x,p)dz =

k2σ2δ2

4θ2

∫ (
Wθ

(
z,x,p +

θq
δ

)
−Wθ(z,x,p)

)
R̂0(q)dq

(2π)d
dz

+
ikσδ

2θ

∫
dq

(2π)d
eiq·x/δ

(
Wθ

(
z,x,p− θq

2δ

)
−Wθ

(
z,x,p +

θq
2δ

))
dB̂(q, z).(3.2)

We will consider the high frequency and large diversity limits with the Itô-Wigner equation (3.2) as our
starting point.

We will use the fact that the L2 norm of the Wigner distribution is conserved

‖Wθ(z)‖L2(R2d) = ‖Wθ(0)‖L2(R2d) ,

which follows from the definition (3.1) and the invariance of the L2(Rd) norm of ψ(z, ·). In the asymptotic
analysis we will assume that the initial Wigner transform is a square integrable function independent of θ.
The way such initial data can arise from the corresponding ones for the Schrödinger equation is by assuming
that we have a suitable mixture of states [3].

3.2. The high frequency limit. We first discuss (2.11) in the high frequency limit θ → 0 followed by
the limit of large lateral diversity, δ → 0. When we take the high frequency limit in (3.2) we find that Wθ

converges weakly to Wδ satisfying the Itô-Liouville equation

dWδ(z,x,p) +
p
k
· ∇xWδ(z,x,p)dz +

k2σ2

8
R

′′

0 (0)4pWδdz = −kσ
2
d∇xB

(x
δ
, z

)
· ∇pWδ.(3.3)

We state this in the following theorem:
Theorem 3.1. The solution Wθ of (3.2) converges in the limit θ → 0 weakly in law to the process Wδ

solving (3.3). We remark that R′′(0) < 0 so that (3.3) is well-posed. Existence and uniqueness of solutions
of the stochastic equation (3.3) follows from the general theory of stochastic flows [21].

3.3. The large diversity limit. The limiting Wigner distribution in Theorem 3.1 solves a stochastic
PDE (3.3), in which the coefficient of the random term fluctuates on the small scale δ. When we subsequently
take the limit of large lateral diversity we find that the limiting Wigner distribution actually becomes de-
terministic. We refer to this as the stabilization of the Wigner distribution. Define W as the deterministic
solution of

∂W

∂z
(z,x,p) +

p
k
· ∇xW (z,x,p) +

k2σ2

8
R

′′

0 (0)4pW = 0.(3.4)

Then we have the following theorem.
Theorem 3.2. The solution Wδ of (3.3) converges in the limit δ → 0 weakly in S ′(R2d), in probability

to W solving (3.4). We prove Theorems 3.1 and 3.2 in Section 4.

3.4. The combined high frequency and large diversity limit.

3.4.1. Weak limit. Next, consider the case where the parameters θ and δ are small and comparable,
with the ratio ξ = δ/θ kept fixed, and δ → 0. We introduce the solution W̃ of the deterministic part of (3.2)

∂W̃

∂z
(z,x,p) +

p
k
· ∇xW̃ (z,x,p) =

k2σ2
ξ

4

∫
dq

(2π)d
R̂0(q)

(
W̃ (z,x,p + q)− W̃ (z,x,p)

)
,(3.5)

with σξ = σξ. The limiting Wigner distribution is now W̃ .
Theorem 3.3. The solution Wδ of (3.2) converges in the limit δ = ξθ → 0 weakly (in S ′(R2d)) and in

probability to W̃ solving (3.5). We prove this theorem also in Section 4.
Note that when θ is comparable to δ the limit Wigner distribution is again deterministic. However, unlike

the limit in Theorem 3.2, the full lateral correlation function affects the limiting Wigner distribution, not only
its form for small displacements.
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3.4.2. Localized test functions. All of the above theorems deal with the weak limit of the Wigner
distribution as a distribution in S ′(R2d) with the test functions independent both of θ and δ. This introduces
additional averaging that makes the proof of the stabilization of the Wigner distribution in the limit fairly
straightforward. The next result shows that the averaging may be performed essentially on an arbitrary scale
that is larger than the non-dimensional correlation length δ but still much smaller than the macroscopic scale.
That means that we have stabilization with much less averaging.

Let λ ∈ C∞c (R2d) be a given smooth test function of compact support, then we define a stretched test
function

λδ(x,p) =
λ(x/δa1 ,p/δa2)

δ(a1+a2)d
(3.6)

This is an approximate δ-function on the spacial scale δa1 and wave vector scale δa2 .
Theorem 3.4. Let Wδ be the (random) solution of (3.2) with ξ = δ/θ and let W̃ satisfy (3.5). Then the

difference process

Zδ(z) =
∫ [

Wδ(z,x,p)− W̃ (z,x,p)
]
λδ(x,p)dxdp

converges to zero in probability as δ → 0, provided that a1 + 2a2 < 1 if d = 1 and a1 + a2 < 2/3 if d = 2. We
prove this theorem in Section 5. In the case d = 1 one possible choice is a2 = 0, a1 < 1 – which means that in
the case of one transverse direction we may actually average the Wigner transform on any spatial scale larger
than the correlation length provided we average over p. A result similar to Theorem 3.4 with the weaker
condition a1 + a2 < 1/2 is proved in [2].

4. Generators and weak limits for the Itô-Wigner process.

4.1. A general convergence result. Theorems 3.1, 3.2 and 3.3 can be put in a unified framework
which we now describe. Consider a family of distributions Wh(t,x,p) which satisfy a stochastic differential
equation

dWh = LhWhdz +
∫

Rd

Mh(q)[Wh]dB̂(z,q)dq, Wh(0,x,p) = W0(x,p),(4.1)

in the sense of the associated weak martingale problem. The Brownian fields B̂(z,q) are the Fourier transforms
of the corresponding ones B(z,x) with covariance (2.9). We will assume that the operators Mh(q) are anti-
symmetric and the operators Lh are non-positive: 〈Lhλ, λ〉 ≤ 0 for any smooth test function λ(x,p). We also
assume that the family Wh(z) is uniformly bounded in L2(Rd × Rd) as is expected from the skew-symmetry
of Mh:

‖Wh(z)‖L2(R2d) ≤ ‖W0‖L2(R2d).(4.2)

In addition, we assume that for any such λ(x,p) we have

Lhλ→ L0λ in L2(R2d) as h→ 0.(4.3)

Regarding the operators Mh we ask that

‖Mh(q)λ‖L2(R2d) ≤ C(λ)(4.4)

with the constant C(λ) independent of h ∈ (0, 1) and q ∈ Rd, and we require that the following quadratic
forms converge:

〈W,Mh(q)λ〉〈W,Mh(−q)λ〉 → 〈W,M0(q)λ〉〈W,M0(−q)λ〉,(4.5)

weakly in S ′(Rd) (as functions of the variable q), uniformly in the ball {‖W‖L2 ≤ C} for each smooth test
function λ. Condition (4.5) is needed to ensure that the infinitesimal generators for the process Wh converge.

Let us introduce the process W which is a solution of

dW = L0Wdz +
∫

Rd

M0(q)[W ]dB̂(z,q)dq, W (0,x,k) = W0(x,k),(4.6)
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in the sense of the associated weak martingale problem. Let also A be the infinitesimal generator for the
process W (t). We assume that the functions of W of the form

F (W ) = f(〈W,λ1〉, . . . , 〈W,λN 〉),(4.7)

where λ1, . . . , λN , . . . ∈ S(Rd × Rd) form a convergence determining class for A. The suitability of test
functions of the form (4.7) is addressed in [15].

Theorems 3.1, 3.2 and 3.3 follow from the following result.
Theorem 4.1. Under the above assumptions Wh converges weakly in S ′(Rd × Rd) to W , solution of

the martingale problem associated to (4.6). The existence and uniqueness of the solution of the martingale
problem for Wh and W depends in an essential way on the particular form of the operators Lh, L0, Mh and
M0. We address this issue in the specific applications of this result in the following sections.

The method of the proof of Theorem 4.1 is quite standard [22]. Let us recall a general strategy for
the proof of weak convergence of a family of distributions Wh(z) ∈ C([0, Z];S ′(Rd × Rd)). First, one has
to establish tightness for the family Wh(z). This shows that a weak limit along a subsequence exists. The
second step is to verify that the infinitesimal generators Ah of the Markov processes Wh(z) converge to the
infinitesimal generator A for a process W (z). This identifies the limit as a solution of the martingale problem
for A. As we are dealing with infinite-dimensional processes, convergence of generators is easier to check on
special test functions which nevertheless should determine the generator uniquely.

4.2. Tightness. We consider the processes Wh(z) in the space C([0, Z];S ′(Rd × Rd)). The sequence
Wh(z) induces a sequence of probability measures Ph on the space D([0, Z];L2(R2d)). We then have

Lemma 4.2. The family of measures Ph is tight. Proof. It follows from the results of Fouque in [18]
and Mitoma in [23] that in order to verify the tightness of the family of distributions Wh(z) it is sufficient to
establish tightness of the processes

Xh[λ](z) = 〈Wh(z), λ〉 =
∫
Wh(z,x,k)λ(x,k)dxdk

for each test function λ ∈ S(Rd × Rd). We use the following tightness criterion:

E
{
|Xh[λ](z)−Xh[λ](z′)|2

∣∣Fz′
}
≤ C(z − z′)(4.8)

for all 0 ≤ z′ ≤ z. While (4.8) establishes tightness of the process Xh[λ](z) in the space D([0, Z]) of right
continuous functions with left limits as the processes X0[λ](z) are themselves continuous, tightness in C([0, Z])
also follows [7].

Using the stochastic equation (4.1) we compute that (dropping λ in the notation for Xh[λ](z))

Xh(z) = Xh(0) +
∫ z

0

〈Wh(s),L?
hλ〉ds+

∫ z

0

∫
〈Wh(s),M?

h(q)λ〉dB̂(s,q)dq.(4.9)

It follows from (4.9) that the stochastic process

Gh(z) = Xh(z)−
∫ z

0

〈Wh(s),L?
hλ〉 ds =

∫ z

0

∫
〈Wh(s),M?

h(q)λ〉dB̂(s,q)dq

is a martingale. In addition, it has a bounded quadratic variation:

E
[
(Gh(z)−Gh(z′))2|Fz′

]
(4.10)

= E

[∫ z

z′

∫ z

z′

∫
〈Wh(s),M?

h(q)λ〉 〈Wh(s′),M?
h(q′)λ〉 dB̂(s,q)dB̂(s′,q′)dqdq′

∣∣∣Fz′

]
=

∫ z

z′

∫
E

[
〈Wh(s),M?

h(q)λ〉 〈Wh(s),M?
h(−q)λ〉 R̂(s,q)dqds

∣∣∣Fz′

]
≤ C(λ)(z − z′).

The last inequality above follows from the fact that ‖Wh(z)‖L2 is uniformly bounded by a deterministic
constant and (4.4). It follows from (4.10) and the uniform bounds (4.2) and (4.3) that we have the moment
bound

E
[
(Xh(z)−Xh(z′))2

∣∣Fz′
]

= E
[
(Gh(z)−Gh(z′) + I(z, z′))2

∣∣Fz′
]
≤ C(λ)(z − z′).(4.11)
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Here we have set

I(z, z′) =
∫ z

z′
〈Wh(s),L?

hλ〉 ds.

The tightness of the family Wh(z) is a consequence of (4.11).

4.3. Generators for a determining class of test functions. As the processes Wh are infinite-
dimensional Markov processes, the action of the corresponding infinitesimal generators on an arbitrary function
of W is somewhat difficult to write down explicitly. However, it is sufficient to consider special continuous
functions F ∈ C(S ′; R) of the form (4.7). We have to verify that for such test functions of the form (4.7) we
have

AhF → AF,(4.12)

uniformly in the balls {‖W‖L2 ≤ C}. As we have explained above, (4.12) together with the uniqueness of the
Markov process W (t) with the generator A would prove the weak convergence of Wh to W .

Let λ1, . . . , λN ∈ C∞c (R2d) be a collection of smooth test functions of compact support and define the
corresponding stochastic processes

Xh
n(z) = 〈Wh, λn〉 (z) =

∫
Wh(z,x,p)λn(x,p) dxdp.(4.13)

Let also f ∈ C∞(RN ) and define the process

f(Xh(z)) = f(Xh
1 (z), . . . , Xh

N (z)).(4.14)

To keep the presentation simple we will consider in detail the action of the generator Ah only in the special
case N = 1 – the generalization to an arbitrary N is immediate at the expense of a greater number of indices.
We drop the subscript n and use the Itô formula to obtain

df(Xh) = f ′(Xh)dXh +
1
2
f ′′(Xh)[dXh]2 = f ′(Xh)〈Wh,L?

hλ〉dz

+
1
2
f ′′(Xh)

∫
Rd

〈Wh, [M?
h(q)λ]〉〈Wh, [M?

h(−q)λ]〉R̂(q)dqdz + f ′(Xh)
∫
Rd

〈Wh, [Mh(q)λ]〉dB̂(z,q)dq.

Therefore, the generator Ah acts on f(X) as

Ahf = 〈W,L?
hλ〉f ′(X) +

1
2

[∫
Rd

〈W, [M?
h(q)λ]〉〈W, [M?

h(−q)λ]〉R̂(q)dq
]
f ′′(X).(4.15)

Similarly, the analogous infinitesimal generator A in the case corresponding to the process W solving (4.6)
acts on f(X) as

Af = 〈W,L?λ〉f ′(X) +
1
2

[∫
Rd

〈W, [M?
0 (q)λ]〉〈W, [M?

0 (−q)λ]〉R̂(q)dq
]
f ′′(X).(4.16)

Therefore, Ahf(X) converges to Af(X) as follows from the assumptions (4.3), (4.5) and (4.4). This finishes
the proof of Theorem 4.1.

4.4. The High Frequency Limit. We now prove Theorem 3.1. Equation (3.2) may be written in the
form (4.1) as follows:

dWθ = LθWdz +
∫

[Mθ(q)W ]dB̂(z,q)dq(4.17)

with

Lθλ(x,p) = −p
k
· ∇xλ(z,x,p) +

k2σ2δ2

4θ2

∫ (
λ

(
z,x,p +

θq
δ

)
− λ(z,x,p)

)
R̂0(q)dq

(2π)d
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and

Mθ(q)λ =
1

(2π)d

ikσδ

2θ
eiq·x/δ

(
λ

(
z,x,p− θq

2δ

)
− λ

(
z,x,p +

θq
2δ

))
.

Using the Taylor formula for small θ it is straightforward to verify that the operators Lθ and Mθ(q) satisfy
the assumptions of Theorem 4.1 with the limits (recall that we let θ → 0 with δ > 0 fixed)

L0λ = −p
k
· ∇λ+

k2σ2

8
(−R

′′

0 (0))∆xλ, M0(q)λ = − ikσe
iq·x/δ

2
q · ∇pλ.

Therefore, Theorem 4.1 applies and the solution of (4.17) converges to the solution of

dW +
p
k
· ∇Wdz − k2σ2

8
(−R

′′

0 (0))∆xWdz = −kσ
2
∇xdB

(
z,

x
δ

)
· ∇pW.(4.18)

Uniqueness of the solution of the martingale problem for (4.18) follows from the general theory of stochastic
flows [21]. The conclusion of Theorem 3.1 follows.

4.5. The Large Diversity Limit. In this section we take the Itô-Liouville equation (4.18) as our
starting point and derive the large diversity limit δ → 0 in Theorem 3.2. This is also an easy consequence of
Theorem 4.1. Indeed, (4.18) has the form (4.1) with

Lλ = −p · ∇xλ+
k2σ2

8
(−R

′′

0 (0))4pλ ,

Mδ(q)λ = − ike
iq·x/δ

2
q · ∇pλ.

In order to verify that Theorem 4.1 applies with M0 = 0 we only need to check condition (4.5): for any test
function φ(q) we have

I =
∫

R2d

〈W, [Mδ(q)λ]〉〈W, [Mδ(−q)λ]〉φ(q)dq

=
k2

4

∫
R5d

eiq·x/δ−iq·y/δφ(q)W (x,p)qj
∂λ(x,p)
∂pj

W (y, r)qm
∂λ(y, r)
∂rm

dxdpdydrdq

=
k2

4

∫
R4d

∂2φ̂((y − x)/δ)
∂xm∂xj

W (x,p)
∂λ(x,p)
∂pj

W (y, r)
∂λ(y, r)
∂rm

dxdpdydr,

so that

|I| ≤ C‖W‖2L2

∫ ∣∣∣∣∣∂2φ̂((y − x)/δ)
∂xm∂xj

∣∣∣∣∣
2 ∣∣∣∣∂λ(x,p)

∂pj

∣∣∣∣2 ∣∣∣∣∂λ(y, r)
∂rm

∣∣∣∣2 dxdpdydr
1/2

≤ Cδd/2.

Hence, Theorem 4.1 applies and the conclusion of Theorem 3.2 indeed follows.

4.6. The combined high frequency and large diversity limit. We now show that Theorem 3.3 is
also a corollary of Theorem 4.1. We find from the transport equation (3.2) that in the case ξθ = δ the Wigner
distribution Wδ solves

dWδ(z,x,p) +
p
k
· ∇xWδ(z,x,p)dz =

k2σ2
ξ

4

∫
R̂0(q) (Wδ(z,x,p + q)−Wδ(z,x,p)) dz

dq
(2π)d

+
ikσξ

2

∫
eiq·x/δ

(
Wδ

(
z,x,p− q

2

)
−Wδ

(
z,x,p +

q
2

))
dB̂(q, z)

dq
(2π)d

.(4.19)

This equation is also of the form (4.1) with

Lλ = −p
k
· ∇xλ+

k2σξ

4

∫
R̂0(q) (λ(x,p + q)− λ(x,p))

dq
(2π)d
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and

Mδ(q)λ(x,p) =
1

(2π)d

ikσξ

2
eiq·x/δ

[
λ

(
x,p− q

2

)
− λ

(
x,p +

q
2

)]
.

In order to verify that (4.5) holds with M0 = 0 we take a smooth test function φ(q) and compute

I =
∫
〈W, [M?

δ(q)λ]〉φ(q) 〈W, [M?
δ(−q)λ]〉 dq

= −k
2

4

∫
W (x,p)eiq·x/δ

[
λ

(
z,x,p− q

2

)
− λ

(
z,x,p +

q
2

)]
W (y, r)e−iq·y/δ

×
[
λ

(
z,y, r +

q
2

)
− λ

(
z,y, r− q

2

)]
φ(q)dqdxdpdydr

= − 1
(2π)4d

k2

4

∫
λ̂(z,x, η)λ̂(z,y, η′)W (x,p)eiq·x/δ

[
ei(p−q/2)·η − ei(p+q/2)·η

]
W (y, r)e−iq·y/δ

×
[
ei(r+q/2)·η′ − ei(r−q/2)·η′

]
φ(q)dqdxdpdydrdηdη′

= − 1
(2π)4d

k2

4

∫
eip·η+ir·η′ λ̂(z,x, η)λ̂(z,y, η′)

[
φ̂

(
−x− y

δ
+
η − η′

2

)
− φ̂

(
−x− y

δ
+
η + η′

2

)
+φ̂

(
−x− y

δ
− η − η′

2

)
− φ̂

(
−x− y

δ
+
η + η′

2

)]
W (x,p)W (y, r)dxdpdydrdηdη′

= I1 + I2 + I3 + I4.

Let us look, for instance, at I1:

|I1| ≤ C

∫ ∣∣∣λ̂(z,x, η)λ̂(z,y, η′)
∣∣∣ ∣∣∣∣φ̂(

−x− y
δ

+
η − η′

2

)∣∣∣∣ ∣∣∣W̃ (x, η)W̃ (y, η′)
∣∣∣ dxdydηdη′.

Here W̃ is the Fourier transform of W (x,k) in the second variable only. We may assume without loss of
generality that λ̂(z,x, η) is compactly supported in η. Then, for almost every (x, η), (y, η′) ∈ suppλ̂ we have

φ̂

(
−x− y

δ
+
η − η′

2

)
→ 0 as δ → 0.

The Lebesgue dominated convergence theorem implies that I1 → 0. Similarly we may show that I2,3,4 → 0
and thus the proof of Theorem 3.3 is complete.

5. The Local Weak Convergence. We consider here the Itô-Wigner equation (3.2) in the limit θ ∼
δ → 0 and prove the local weak convergence result stated in Theorem 3.4.

5.1. The Integral Formulation of the Itô-Wigner Equation . Let us recall the Itô-Wigner equation
(3.2) in the regime δ = θ: we will set σξ = 1 without any loss of generality

dWδ +
p
k
· ∇xWδdz =

k2

4

∫
R̂0(q)[Wδ(p + q)−Wδ(p)]

dq
(2π)d

dz(5.1)

+
ik

2

∫
eiq·x/δ

[
Wδ

(
p− q

2

)
−Wδ

(
p +

q
2

)] dq
(2π)d

dB̂(z,q).

Our objective is to analyze the role of the Brownian term in (5.1), and show that in the limit δ → 0 the rapid
oscillatory phase in the q integral makes it small, so that Wδ converges to the solution of (3.5) in the “locally
weak” sense of Theorem 3.4.

The proof is based on the integral formulation of the transport equation and the Picard iteration. In order
to develop this argument it is convenient to introduce the function u(z,x,p) = Wδ(z,x,p) exp (Σz) with the
total scattering cross-section

Σ =
k2

4

∫
R̂0(q)

dq
(2π)d

.
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Then equation (5.1) becomes

du+
p
k
· ∇xudz =

k2

4

∫
R̂0(q)u(p + q)

dq
(2π)d

dz +
ik

2

∫ [
u

(
p− q

2

)
− u

(
p +

q
2

)] eiq· xδ dq
(2π)d

dB̂(z,q).(5.2)

This, in turn, can be re-written as an integral equation that will be the starting point of our analysis

u(z,x,p) = W0

(
x− zp

k
,p

)
+
k2

4

∫ z

0

∫
R̂0(q)u

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

(5.3)

+
ik

2

∫ z

0

∫
eiq· (x−(z−s)p/k)

δ

[
u

(
s,x− (z − s)

p
k
,p− q

2

)
− u

(
s,x− (z − s)

p
k
,p +

q
2

)] dqdB̂(s,q)
(2π)d

.

The first result addresses the existence and uniqueness of solutions of (5.3). Let us fix Z > 0 and define the
space X = C([0, Z];L2(R2d × Ω)) with the norm

‖f‖X = sup
0≤z≤Z

(∫
E

{
|f(z,x,p)|2

}
dxdp

)1/2

.

We have the following proposition.
Proposition 5.1. Assume that

R ≡ max
(
‖R̂0‖L1(Rd), ‖R̂0‖∞

)
<∞(5.4)

Then there exists a unique solution to (5.3) in the space X.
We also introduce the function ū that satisfies the deterministic part of (5.3), without the random term

ū(z,x,p) = W0

(
x− zp

k
,p

)
+
k2

4

∫ z

0

∫
R̂0(q)ū

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

,(5.5)

with the initial data u(0,x,p) = ū(0,x,p) = W0(x,p).
We will show that u converges to ū in a locally weak sense. More precisely, the following proposition

holds.
Proposition 5.2. Let λ(x,p) ∈ C∞c (R2d) be a smooth deterministic test function of compact support

and define the stretched test function as in (3.6)

λδ(x,p) =
λ(x/δa1 ,p/δa2)

δ(a1+a2)d
.(5.6)

Then, under the assumption (5.4) there exists a constant C = C(k,R, λ, Z) > 0 so that for z ≤ Z

E
{
|〈u− ū, λδ〉|2

}
(z) ≤ C(k,R, λ, Z)‖W0‖2L2(R2d) ×

{
δ1−a1−2a2 | log δ|, d = 1
δ2−3(a1+a2), d = 2 .(5.7)

Theorem 3.4 follows immediately from Proposition 5.2.

5.2. Existence: proof of Proposition 5.1.

The iterative series. The proof of Proposition 5.1 is by an iterative process expanding the solution into
a series according to the order of scattering. We introduce the operators T1, T2 : X → X by

T1f(z,x,p) =
k2

4

∫ z

0

∫
R̂0(q)f

(
s,x− (z − s)

p
k
,p + q

) dqds
(2π)d

(5.8)

and

T2f =
ik

2

∫ z

0

∫
e

iq·(x−(z−s)p/k)
δ

[
f

(
s,x− (z − s)

p
k
,p− q

2

)
− f

(
s,x− (z − s)

p
k
,p +

q
2

)]dqdB̂(s,q)
(2π)d

.(5.9)
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With this notation, equation (5.3) may be re-written as

u(z,x,p) = W0

(
x− zp

k
,p

)
+ (T1 + T2)u(z,x,p)(5.10)

We now represent the solution of (5.10) as a series. Let

u0(z,x,p) = ū0(z,x,p) = W0

(
x− zp

k
,p

)
be the solution of the homogeneous transport equation, and set the “up to n-th order” scattering term as

un(z,x,p) = W0

(
x− zp

k
,p

)
+ (T1 + T2)un−1(z,x,p)(5.11)

for n ≥ 1. We also define the pure n-th order scattering contribution as vn = un − un−1, n ≥ 1, the solution
of

vn(z,x,p) = (T1 + T2)vn−1(z,x,p), v0(z,x,p) = u0(z,x,p).(5.12)

Proposition 5.1 follows from the following lemma.
Lemma 5.3. Assume that (5.4) holds. Then there exists a constant C = C(k,R, Z) so that for n ≥ 1

‖vn‖2X ≤ ‖W0‖2L2(R2d)

(C(k,R, Z))n

n!
.(5.13)

Convergence of the iteration process. We now prove Lemma 5.3. This lemma follows from the
Cauchy-Schwarz inequality and the Itô-isometry for stochastic flows. Observe that we have

E
{∫ z1

0

∫ z2

0

∫
λ(s1,q1)λ(s2,q2) dB̂(s1,q1)dB̂(s2,q2) dq1dq2

}

=

[z1,z2]∫
0

∫
E {λ(s,q)λ(s,−q)} (2π)dR̂0(q) dsdq ,(5.14)

with the correlation function R0 defined in (2.9) and [z1, z2] = min(z1, z2). We then find that the following
bounds hold for the operators T1 and T2, respectively:

E
{
‖T1vn(z)‖2L2(R2d)

}
≤ CE

{∫ z

0

∫ z

0

∫
|R̂0(q)R̂0(q′)|

{∫
|vn(s,x,p)|2 dxdp

∫
|vn(s′,x′,p′)|2 dx′dp′

} 1
2 dqdq′dsds′

(2π)2d

}

≤ Cz
(
‖R̂0‖L1(Rd)

)2

E
{∫ z

0

∫
|vn(s,x,p)|2 dxdpds

}
,

and

E
{
‖T2vn(z)‖2L2(R2d)

}
≤ C

∫ z

0

∫
|R̂0(q)|

(∫
E

{∣∣∣vn

(
s,x− (z − s)

p
k
,p− q

2

)
−vn

(
s,x− (z − s)

p
k
,p +

q
2

)∣∣∣2} dxdp
)
dqds ≤ C‖R̂0‖L1(R)

∫ z

0

∫
E

{
|vn (s,x,p)|2

}
dxdpds.

Hence we have

E
{
‖(T1 + T2)vn(z)‖2L2(R2d)

}
≤ C(k,R, Z)

∫ z

0

E
{
‖vn (s) ‖2L2(R2d)

}
ds.(5.15)

Using (5.12) and iterating (5.15) we obtain for n ≥ 1

E
{
‖vn(z)‖2L2(R2d)

}
≤ (C(k,R, Z)z)n

n!
‖W0‖2L2(R2d) ,

and the conclusion of Lemma 5.3 follows. �
The proof of Proposition 5.1 is also complete.
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5.3. Convergence to the non-random process: proof of Proposition 5.2.

The iterative series for the error. In order to prove Proposition 5.2 we construct an iterative ap-
proximation ūn to the function u and estimate the n-th order error un − ūn. Recall that

ū(z,x,p) = W0

(
x− zp

k
,p

)
+ T1ū(z,x,p).(5.16)

Accordingly, we define

ūn(z,x,p) = W0

(
x− zp

k
,p

)
+ T1ūn−1(z,x,p).(5.17)

Similarly to Lemma 5.3 we have the same estimate for v̄n = ūn − ūn−1 as for vn:

‖v̄n‖2X ≤ ‖W0‖2L2(R2d)

(C(k,R, Z))n

n!
.(5.18)

Proposition 5.2 follows from the following Lemma.
Lemma 5.4. Let λδ be a stretched test function as in (5.6). Then, under the assumption (5.4) there exists

a constant C = C(k,R, λ, Z) > 0 so that for z ≤ Z

E
{
|〈un − ūn, λδ〉|2

}
(z) ≤ C(k,R, λ, Z)‖W0‖2L2(R2d) ×

{
δ1−a1−2a2 | log δ|, d = 1
δ2−3(a1+a2), d = 2 .(5.19)

Proof of Proposition 5.2. Lemma 5.3 and (5.18) imply that ∀δ > 0 ∃ N(δ) > 0 so that

E
{
|〈u− un, λδ〉|2

}
(z) ≤ δ2 for all n ≥ N(δ)

and

E
{
|〈ū− ūn, λδ〉|2

}
(z) ≤ δ2 for all n ≥ N(δ).

The estimate (5.7) now follows by writing u− ū = (u− un) + (un − ūn) + (ūn − ū) and using Lemma 5.4. �

The proof of Lemma 5.4. The difference un − ūn satisfies

un − ūn = T1(un−1 − ūn−1) + T2un−1,

which can be written as

un − ūn =
n−1∑
j=0

Tn−1−j
1 T2uj .

In order to prove Lemma 5.4 we observe from the above that

|〈un − ūn, λδ〉|2 = |
n−1∑
j,l=0

〈Tn−1−j
1 T2uj , λδ〉〈Tn−1−l

1 T2ul, λδ〉|.(5.20)

The individual terms in (5.20) are estimated with the help of the following lemma.
Lemma 5.5. Let θi ∈ X, zi ≤ Z, the stretched test function λδ be defined as in (5.6) and R < ∞ be

defined as in (5.4). Then there exist two constants C1(k,R,Z) and C2(k,R, Z, λ), the second of which depends
in addition on the test function λ, such that∣∣∣E {

〈[T j
1T2θ1](z1), λδ〉〈[T l

1T2θ2](z2), λδ〉
}∣∣∣(5.21)

≤ (C1(k,R,Z)z1)j

j!
(C1(k,R, Z)z2)l

l!
C2(k,R, Z, λ) sup

m=1,2
‖θm‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 .
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It follows from Lemma 5.5 that∣∣∣∣∣∣E
∑

j,l

〈[Tn−1−j
1 T2θj ](z1), λδ〉〈[Tn−1−l

1 T2θl](z2), λδ〉


∣∣∣∣∣∣(5.22)

≤ eC1(k,R,Z)(z1+z2) C2(k,R, λ, Z) sup
j∈ 1,···,n−1

‖θj‖2X ×
{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2 .

Using Lemma 5.3 and expression (5.20) we therefore find that

E
{
|〈un − ūn, λδ〉|2

}
(z) ≤ C3(k,R, λ, Z) ‖W0‖2L2(R2d) ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2 .

Thus, the conclusion of Lemma 5.4 follows. �

5.4. The Born expansion: the proof of Lemma 5.5. It remains only to prove Lemma 5.5 in order
to finish the proof of Theorem 3.4. First, we obtain the bound (5.21) in the case j = l = 0. In this case we
start by rewriting the expression in (5.20) using the Fourier transform and Itô isometry. In the second step
the z-integral in T2 is decomposed into two intervals. In the final boundary layer interval we simply use the
Cauchy-Schwarz inequality as well as the smallness of the boundary layer. Outside the final time boundary
layer we use the line integration in (5.9) to produce additional averaging, as is typical in the transport
theory. The price is in the factors of (z1 − s) and (z2 − s) appearing in the denominator which produce large
contributions if the final boundary layer is taken too small. In the last step we optimize with respect to the
width of the boundary layer to obtain a bound for the j = l = 0 term.

Then we present the induction step that gives the bound in Lemma 5.5 for general j and l. The general
term can be written in terms of the corresponding expressions with smaller j and l and bounded using an
induction argument. A complicating aspect of the induction is the shift of the arguments in the integrals in
(5.8), which we handle by introducing a shift operator in the induction.

Bound on Born Term for the Random Scattering. We begin by proving (5.21 ) in the special case
j = l = 0. Let θj ∈ X, then we need to show that

|E {〈[T2θ1](z1), λδ〉〈[T2θ2](z2), λδ〉}| ≤ C(k,R, λ, Z) sup
m=1,2

‖θm‖2X ×
{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 .(5.23)

The left side in (5.23) is given explicitly by

I00 = |E {〈[T2θ1](z1), λδ〉〈[T2θ2](z2), λδ〉}|(5.24)

=
k2

4(2π)2d

∣∣∣∣E {∫ z1

0

∫ z2

0

∫
eiq1·(x1−(z1−s1)p1/k)/δ+iq2·(x2−(z2−s1)p2/k)/δ

×
[
θ1

(
s1,x1 − (z1 − s1)

p1

k
,p1 −

q1

2

)
− θ1

(
s1,x1 − (z1 − s1)

p1

k
,p1 +

q1

2

)]
×

[
θ2

(
s2,x2 − (z2 − s2)

p2

k
,p2 −

q2

2

)
− θ2

(
s,x2 − (z2 − s2)

p2

k
,p2 +

q2

2

)]
× λδ(x1,p1)λδ(x2,p2)dB̂(s1,q1)dB̂(s2,q2)dq1dq2dx1dx2dp1dp2

}∣∣∣ .
Using the Itô isometry (5.14) and writing λδ in terms of the Fourier transform we find that the above expression
for I00 becomes

I00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
eiq·(x1−(z1−s)p1/k)/δ−iq·(x2−(z2−s)p2/k)/δ+i[x1·r1+x2·r2]+i[p1·l1+p2·l2]

×
[
θ1

(
s,x1 − (z1 − s)

p1

k
,p1 −

q
2

)
− θ1

(
s,x1 − (z1 − s)

p1

k
,p1 +

q
2

)]
×

[
θ2

(
s,x2 − (z2 − s)

p2

k
,p2 +

q
2

)
− θ2

(
s,x2 − (z2 − s)

p2

k
,p2 −

q
2

)]
×λ̂(δa1r1, δ

a2 l1)λ̂(δa1r2, δ
a2 l2)R̂0(q)dqdsΠ2

j=1dxjdpjdrjdlj
}∣∣∣(5.25)
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with C(k) = k2/(4(2π)5d). Making a change of variables x′j = xj − (zj − s)pj/k and taking the Fourier
transform in x′1 and x′2, we obtain

I00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[((z1−s)p1/k)·r1+((z2−s)p2/k)·r2]+i[p1·l1+p2·l2](5.26)

×
[
θ̌1

(
s,−r1 −

q
δ
,p1 −

q
2

)
− θ̌1

(
s,−r1 −

q
δ
,p1 +

q
2

)]
×

[
θ̌2

(
s,−r2 +

q
δ
,p2 +

q
2

)
− θ̌2

(
s,−r2 +

q
δ
,p2 −

q
2

)]
×λ̂(δa1r1, δ

a2 l1)λ̂(δa1r2, δ
a2 l2)R̂0(q)dqdsΠ2

j=1dpjdrjdlj
}∣∣∣ .

Expression (5.26) contains four terms that come from the products of θj . We consider one of them, take the
Fourier transform in p1 and p2 and make a change of variables q/δ 7→ q to find∣∣∣I(1)

00

∣∣∣ ≤ δdC(k)E

{∫ [z1,z2]

0

∫ ∣∣∣θ̂1 (s,−r1 − q,−l1 − r1(z1 − s)/k)(5.27)

× θ̂2 (s,−r2 + q,−l2 − r2(z2 − s)/k) λ̂(δa1r1, δ
a2 l1)λ̂(δa1r2, δ

a2 l2)R̂0(δq)
∣∣∣ dqΠ2

j=1drjdlj ds
}
.

We now decompose the interval (0, [z1, z2]) in the above integral as

A1 = {s | min(|s− z1|, |s− z2|) < δp} ,(5.28)
A2 = (0, [z1, z2]) \ A1,

for p some positive constant, then
∣∣∣I(1)

00

∣∣∣ ≤ I1 + I2, where Ij is the integral (5.27) over the time interval Aj .
Making use of the Cauchy-Schwarz inequality in the integration over the random variable and q we find

I1 ≤ δdC(k)‖R̂0‖∞
∫
A1

∫ [∫
E

{∣∣∣θ̂1 (s,q,−l1 − r1(z1 − s)/k)
∣∣∣2} dq

×
∫

E
{∣∣∣θ̂2 (s,q′,−l2 − r2(z2 − s)/k)

∣∣∣2} dq′
]1/2 ∣∣∣λ̂(δa1r1, δ

a2 l1)λ̂(δa1r2, δ
a2 l2)

∣∣∣ Π2
j=1drjdlj ds.

It then follows after applying the Cauchy-Schwarz inequality with respect to the l1 and l2 variables that

I1 ≤ δdC(k,R)
∫
A1

sup
j=1,2

E
{
‖θj(s)‖2L2(R2d)

}
ds

∫ [∫ ∣∣∣λ̂(δa1r1, δ
a2 l)

∣∣∣2 dl ∫ ∣∣∣λ̂(δa1r2, δ
a2 l)

∣∣∣2 dl] 1
2

dr1dr2

≤ δd(1−2a1−a2)+pC(k,R, λ) sup
j=1,2

‖θj‖2X .(5.29)

Next, we derive a bound for I2, the integral (5.27) over the interval z ∈ A2. Using the Cauchy-Schwarz
inequality as above, with respect to the random variable and the variable q first, and then with respect to r1

and r2, we obtain

I2 ≤ δdC(k,R)
∫
A2

∫ [∫
E

{∣∣∣θ̂1 (s,q,−l1 − r1(z1 − s)/k)
∣∣∣2} dqdr1

×
∫

E
{∣∣∣θ̂2 (s,q′,−l2 − r2(z2 − s)/k)

∣∣∣2} dq′dr2

∫ ∣∣∣λ̂(δa1r′1, δ
a2 l1)

∣∣∣2dr′1∫ ∣∣∣λ̂(δa1r′2, δ
a2 l2)

∣∣∣2 dr′2] 1
2

dl1dl2 ds.

After a change of variables the above integral becomes

I2 ≤ δdC(k,R)
∫
A2

sup
j=1,2

E
{
‖θj(s)‖2L2(R2d)

}(
k2

(z1 − s)(z2 − s)

)d/2

ds

×
∫ [∫ ∣∣∣λ̂(δa1r, δa2 l1)

∣∣∣2 dr∫ ∣∣∣λ̂(δa1r′, δa2 l2)
∣∣∣2 dr′]1/2

dl1dl2(5.30)

≤ δd(1−a1−2a2)C(k,R, λ) sup
j=1,2

‖θj‖2X
∫
A2

[(
k

z1 − s

)d

+
(

k

z2 − s

)d
]
ds.
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We derive from this the following bound for I2:

I2 ≤ δd(1−a1−2a2)C(k, λ,R) sup
j=1,2

‖θj‖2X ×
{
| log δp|, d = 1
δ−p, d = 2 .(5.31)

Using (5.29) and (5.31) we then arrive at the following bound for I(1)
00 in (5.27):

|I(1)
00 | ≤ C(k,R, λ) sup

j=1,2
‖θj‖2X ×

{
δ(1−2a1−a2)+p + δ(1−a1−2a2)| log δp|, d = 1
δ2(1−2a1−a2)+p + δ2(1−a1−2a2)−p, d = 2 .

We choose now p = a1 − a2 to obtain at estimate

|I(1)
00 | ≤ C(k,R, λ, Z) sup

j=1,2
‖θj‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2 .(5.32)

The other terms contributing to I00 in (5.26) can be bounded analogously and we can conclude that (5.23)
holds. This proves the bound (5.5) when j = l = 0.

The estimate of I00 in (5.30) is not optimal when z1 6= z2 as far s-integration is concerned. While this
leads to sub-optimal estimates in the higher order terms with j, l > 0, this step does not seem to over-estimate
the term I00 with z1 = z2, which does have a contribution to the overall error in Proposition 5.2. A more
careful analysis would reveal the relative size of the error produced by various orders of scattering – we do
not pursue this avenue here.

Bound on Higher Order Scattering Terms. In this section we treat the general case j > 0, l > 0 in
Lemma 5.5 by induction. In order to account for the shifts of the arguments in various integrals we introduce
the shift operator Tc : X → X defined by

[Tcθ] (z,x,p) = θ(z,x + (c1 + c2z)p + (c3 + c4z),p + c5) ,(5.33)

where c1, c2 ∈ R and c3, c4, c5 ∈ Rd. We will establish inductively the following generalized version of Lemma
5.5: ∣∣∣E {

〈[TcT
j
1T2θ1](z1), λδ〉〈[Tc′T

l
1T2θ2](z2), λδ〉

}∣∣∣(5.34)

≤ (C1(k,R,Z)z1)j

j!
(C1(k,R, Z)z2)l

l!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2 .

The constants in (5.34) are independent of the shift c. We first assume that (5.34) holds for 0 ≤ j ≤ ĵ and
0 ≤ l ≤ l̂. Note that∣∣∣E {

〈[TcT
bj+1
1 T2θ1](z1), λδ〉〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣
=

∣∣∣∣E {
k2

4(2π)d

∫ z1

0

R̂0(q)〈[Tec(z1,q)T
bj
1T2θ1](s), λδ〉 dqds 〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣∣ ,
with the vector c̃ which has the components

c̃(z1,q)1 = c1 + (c2 − 1/k)z1, c̃(z1,q)2 = 1/k,
c̃(z1,q)3 = c3 + c4z1 − z1c5/k, c̃(z1,q)4 = c5/k, c̃(z1,q)5 = c5 + q.

Therefore, it follows from the induction hypothesis that∣∣∣E {
〈[TcT

bj+1
1 T2θ1](z1), λδ〉〈[Tc′T

l̂
1T2θ2](z2), λδ〉

}∣∣∣ ≤ k2

4(2π)d

∫ z1

0

|R̂0(q)| (C1(k,R,Z)s)bj
ĵ!

dqds

× (C1(k,R, Z)z2)l̂

l̂!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2

≤ (C1(k,R, Z)z1)(
bj+1)

(ĵ + 1)!
(C1(k,R,Z)z2)l̂

l̂!
C2(k,R, λ, Z) sup

m=1,2
‖θm‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1
δ2−3a1−3a2 , d = 2 ,
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if we take

C1(k,R, Z) ≥
k2

∫
|R̂0(q)| dq
4(2π)d

.

We conclude that (5.34) holds for 0 ≤ j ≤ ĵ + 1 and 0 ≤ l ≤ l̂.
To complete the induction argument we must finally show that (5.34) is valid for j = l = 0. This can

be accomplished by a generalization of the argument leading to the bound (5.23) derived in the case without
shift and we summarize this step below. We need to estimate

Ĩ00 = |E {〈[TcT2θ1](z1), λδ〉〈[Tc′T2θ2](z2), λδ〉}|

=
k2

4(2π)2d

∣∣∣∣E {∫ z1

0

∫ z2

0

∫
eiq1·(x̃1−(z1−s1)p̃1/k)/δ+iq2·(x̃2−(z2−s1)p̃2/k)/δ

×
[
θ1

(
s1, x̃1 − (z1 − s1)

p̃1

k
, p̃1 −

q1

2

)
− θ1

(
s1, x̃1 − (z1 − s1)

p̃1

k
, p̃1 +

q1

2

)]
×

[
θ2

(
s2, x̃2 − (z2 − s2)

p̃2

k
, p̃2 −

q2

2

)
− θ2

(
s, x̃2 − (z2 − s2)

p̃2

k
, p̃2 +

q2

2

)]
× λδ(x1,p1)λδ(x2,p2)dB̂(s1,q1)dB̂(s2,q2)dq1dq2dx1dx2dp1dp2

}∣∣∣ ,
where

x̃1 = x1 + (c1 + c2z1)p1 + (c3 + c4z1), p̃1 = p1 + c5 ,(5.35)
x̃2 = x2 + (c′1 + c′2z2)p2 + (c′3 + c′4z2), p̃2 = p2 + c′5.

Using the same transformations as in the passage from (5.24) to (5.26) we obtain the following generalization
of (5.26)

Ĩ00 = C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[((z1−s)p̃1/k)·r1+((z2−s)p̃2/k)·r2]+i[p1·l1+p2·l2](5.36)

× e−i[(c1+c2z1)p1+(c3+c4z1)]·r1−i[(c′1+c′2z2)p2+(c′3+c′4z2)]·r2

×
[
θ̌1

(
s,−r1 −

q
δ
, p̃1 −

q
2

)
− θ̌1

(
s,−r1 −

q
δ
, p̃1 +

q
2

)]
×

[
θ̌2

(
s,−r2 +

q
δ
, p̃2 +

q
2

)
− θ̌2

(
s,−r2 +

q
δ
, p̃2 −

q
2

)]
× λ̂(δa1r1, δ

a2 l1)λ̂(δa1r2, δ
a2 l2)R̂0(q)dqdsΠ2

j=1dpjdrjdlj
}∣∣∣ .

Considering the term similar to that in (5.27) and taking Fourier transform in p1 and p2 we obtain∣∣∣Ĩ(1)
00

∣∣∣ ≤ C(k)

∣∣∣∣∣E
{∫ [z1,z2]

0

∫
ei[q·((z1−s)r1/k+l1−(z2−s)r2/k−l2)/2]

×e−i[(c1+c2z1)q/2+(c3+c4z1)]·r1+i[(c′1+c′2z2)q/2−(c′3+c′4z2)]·r2+ic5·((c1+c2z1)r1−l1)+ic′5·((c
′
1+c′2z2)r2−l2)

× θ̂1

(
s,−r1 −

q
δ
,−l1 − r1h1(s)/k

)
θ̂2

(
s,−r2 +

q
δ
,−l2 − r2h2(s)/k

)
× λ̂(δa1r1, δ

a2 l1)λ̂(δa1r2, δ
a2 l2)R̂0(q)dqΠ2

j=1drjdlj ds
}∣∣∣ ,

with

h1(s) = (z1 − s)− k(c1 + c2z1), h2(s) = (z2 − s)− k(c′1 + c′2z2).(5.37)

After the change of variable q/δ 7→ q we find∣∣∣I(1)
00

∣∣∣ ≤ δdC(k)E

{∫ [z1,z2]

0

∫ ∣∣∣θ̂1 (s,−r1 − q,−l1 − r1h1(s)/k)

× θ̂2 (s,−r2 + q,−l2 − r2h2(s)/k) λ̂(δa1r1, δ
a2 l1)λ̂(δa1r2, δ

a2 l2)R̂0(δq)
∣∣∣ dqΠ2

j=1drjdlj ds
}
.
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In the above integral we decompose the interval (0, [z1, z2]) as

Ã1 = {s | min(|h1(s)|, |h2(s)|) < δp} , Ã2 = (0, [z1, z2]) \ Ã1,(5.38)

for p some positive constant, which is a slight modification of the final boundary layer defined in (5.28). The
argument following (5.27) can now be repeated verbatim with these slightly modified integration subintervals
to give the generalized version of (5.32):

|Ĩ(1)
00 | ≤ C̄(k,R, λ, Z) sup

j=1,2
‖θj‖2X ×

{
δ(1−a1−2a2)| log δ|, d = 1

δ2−3a1−3a2 , d = 2 .

The other terms contributing to Ĩ00 in (5.36) can again be bounded analogously. This concludes the inductive
proof of (5.34) and hence also that of Lemma 5.5. �
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